

Fig. 6. The three possible topological arrangements of cations in adjacent polymeric chains in the (110) plane. The shortest $Pb^{2+} \cdots Pb^{2+}$ distances are shown by broken lines.

to play a smaller role than had been expected in the maintenance of a regular periodicity of thiourea groups along the direction of the chain axis. The important factor here seems to be the close packing of the amine groups of adjacent chains and interactions with the disordered anions in the channels between cation chains.

Note added in proof: – Truter & Vickery (1972) have suggested that $NH \cdots S$ hydrogen bonding between successive thioura molecules stacked along the [001] axis is responsible for the integrity of the columns in this family of complexes, and have shown that the appropriate interatomic distances and angles are compatible with this proposal. Hydrogen bonding within the columns could provide a neat answer to the question why the presence or absence of lead ions has so little effect on the column dimensions.

We are grateful to Sir Ronald Nyholm, F.R.S. (University College, London) for helpful discussions.

References

- BOEYENS, J. C. A. & HERBSTEIN, F. H. (1967). *Inorg. Chem.* 6, 1408.
- CRUICKSHANK, D. W. J. & PILLING, D. E. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, p. 32. Oxford: Pergamon Press.
- GOLDBERG, I. & HERBSTEIN, F. H. (1969). Isr. J. Chem. 7, VI p.
- GOLDBERG, I., HERBSTEIN, F. H. & KAFTORY, M. (1968). In Progress in Coordination Chemistry, edited by M. CAIS, p. 238. Elsevier: Amsterdam.
- GOLDBERG, I. & HERBSTEIN, F. H. (1972a). Acta Cryst. B28, 400.
- GOLDBERG, I. & HERBSTEIN, F. H. (1972b). In preparation.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- HERBSTEIN, F. H. & KAFTORY, M. (1972). Acta Cryst. B28, 000.
- International Tables for X-ray Crystallography. (1962). Vol. III, p. 213. Birmingham: Kynoch Press.
- NARDELLI, M. & CHIERCI, I. (1959). Ric. Sci. 29, 371.
- ROSENHEIM, A. & MEYER, V. J. (1906). Z. anorg. allgem. Chem. 49, 13.
- TRUTER, M. R. & VICKERY, B. L. (1971). Acta Cryst. Submitted for publication.

Acta Cryst. (1972). B28, 415

Die Kristallstruktur des Phtalimids (Kladnoit)

VON ECKHART MATZAT

Mineralogisch-Kristallographisches Institut der Universität Göttingen, Deutschland (BRD)

(Eingegangen am 8. März 1971 und wiedereingereicht am 5. April 1971)

Phthalimide, $C_8O_2NH_5$, occurring as the mineral kladnoite, is monoclinic with $a_0 = 22.83$, $b_0 = 7.651$, $c_0 = 3.810$ Å, $\beta = 91.36^{\circ}$, space group $P2_1/n$, Z = 4. The crystal structure has been determined from threedimensional diffractometer data. The final R index for 1058 reflexions is 0.094. Two plane molecules are centrosymmetrically hydrogen bonded. These groups are stacked parallel to either ($\overline{2}11$) or ($\overline{21}1$) in the c direction.

Experimentelles

Das von Rost (1942) beschriebene Mineral Kladnoit mit der chemischen Zusammensetzung des Phtalimids ($C_8O_2NH_5$), (Probe Nr. 34199 des Nationalmuseums Prag) wurde auf einem Zweikreisdiffraktometer (STADI-2-System der Fa. STOE) vermessen. Aus den systematischen Auslöschungen (0k0, k = 2n + 1; h0l, h+l=2n+1) ergab sich die Raumgruppe $P2_1/n$. Folgende Daten wurden ermittelt: Z = 4, $a_0 = 22,83 \pm 0,01 \text{ Å},$ $b_0 = 7,651 \pm 0,004 \text{ Å},$ $c_0 = 3,810 \pm 0,002 \text{ Å},$ $\beta = 91,36 \pm 0,02^\circ,$ $D_m = 1,47 \text{ g.cm}^{-3},$ $D_c = 1,469 \text{ g.cm}^{-3},$ $\mu \text{Cu } K\alpha = 9,15 \text{ cm}^{-1};$

sie stehen in guter Übereinstimmung mit den von Bagchi & Kasem (1945) bestimmten Werten.

Mit Cu Ka-Strahlung wurden bei Drehung um die c-Achse mit einem Proportionalzählrohr die Intensitäten von 1058 Reflexen gemessen. Auf Absorptionsund Extinktionskorrektur wurde verzichtet (Plättchenabmessungen $0,1 \times 0,35 \times 0,4$ mm). Die Standardabweichung wurde nach der Zählratenstatistik berechnet. 61 Reflexintensitäten, die kleiner als die Standardabweichung gemessen wurden, erhielten das Gewicht $\sigma/3$.

Strukturbestimmung und Verfeinerung

Die Vorzeichen für 154 normalisierte Strukturfaktoren >1.5 konnten unter Anwendung der Sayre'schen Gleichung und der Tripelproduktmethode bestimmt werden. Die Auswertung einer dreidimensionalen Fouriersynthese diente zur vorläufigen Festlegung der Ortsparameter der O-, N- und C-Atome. Das Modell wurde ohne Berücksichtigung der Wasserstoffparameter in 4 Least-squares-Zyklen von R = 0.27 auf R = 0.21 mit isotropen Temperaturfaktoren verfeinert. Bei der weiteren anisotropen Verfeinerung erschien aufgrund einer Differenzfourierprojektion in Richtung der c-Achse unter Annahme eines planaren Moleküls die Einführung

Tabelle 1. Beobachtete und berechnete Strukturfaktoren

(*) Kleiner als ihre Standardabweichung beobachtet. (-) Bei der Least-squares-Verfeinerung nicht berücksichtigt.

- * L	(12)	£(,)	ekt fri	44.2	9 K L - FI.	5 1 10	1. A A A A A A A A A A A A A A A A A A A	H 1.2		1151	0.0	
200	15.50	14.14	11 4 3 4.44	10.00	-11 0 1 0.2	7 6.12	- 19 2 1 - 197 - 20 2 1 - 3919	-1.20	051	2.07	-2.62	-12 1 2 *
c.	15.91	13.50	114.2 344		-12 5 1 15.4	1 -14.87	331 53	1.10		1-24	-1.32	- ::::::::::::::::::::::::::::::::::::
10 0 0	11.91	11.30	14 - 7 3.40	-12.45	-2101 11.0	1 0.97	-71 2 1 1.11	3.10	:::	2-13	-16.33	-21 1 2
14 0 0	30.02	24.93	17 4 3 6-04	-5.61	011 2.1	5 -1.25	-25 2 1 5.27	-4.51	;;;	3.86	4.01	-23.4 2 3
14 4 3	1.1	-9.31	1149 3.44	5.25	2 1 1- 13.2	\$ 35.64	1 3 1- 38.02	39,01		2.33	5.61	
22 0 0	10.17	15.65	21 4 7 2.14	0. 19		6 -2-32	3 3 4 6.41	-0.43	10 5 1	19.79	-18.49	
26 0 0	0.86	1.49	23 4 0+ 0.13	-1.10	6 i 1 11.9	11-40	5 1 1 18.06	10.44	12 5 1	13.81	11.20	
210-	37.97	33.22	2 5 3 3,35	3.15		3 -4.10	7 3 1 0.77	1.44	14.5.1	19.42	18.30	-12 - 2 - 2
10	14.69	-19.75		-4.64	10 1 1 1.4	0 1.4	9 1 1 11.42	-9.65	16 5 1	7.34	-1.15	-15 - 1 - 1
510	5.14	-5.03	6 5 9 1.63	3.74	12 1 1 2.4	7 -2.02	11 5 1 3.44	1.71	14 5 1	4.14	1 -	-10 - 1 - 1
410	3.38	2.9.	8 5 3 10.20	-12.11	14 1 1 0.0	5 1.07	13 5 1 6.42	6.71	26.5.1	0.66	C.4C	
10 1 0	7.01	2.94	10 5 0 0.16	0.43	16 1 1 2.5	3 2.62	14 5 1 14.04	19.33	- 311	0.04	0.48	
12 1 0	9.31	8.95	12 5 0 11.40	14.49	18 1 1 0.2	8 -1-33	17 5 1 13.35	12.10		9.02	-8.23	
1. 1 0	3.01	3.21	14 5 3 0.95	-3.22	20 1 1 3.0	6 2.07	19 3 1 0.68	1.31		1.69	-0.72	,,, ,
16 1 0	2.62	-2.23	16 5 0+ 0.17	2.39		0 -4.01	21 3 1 3.88	4.10	-851	13.01	12.73	
19 1 0	¥.01	7.61	18 5 0 3.36	51	24 1 1 1.1	6 1.30	23 3 1. 0.21	0.19	-10 5 1	0.78	-0.15	
20 1 0	0.07	5.80	20 5 0 1.45	-7.15	-1 1 1- 51-8	9 -61.95	-2 3 1 7.02	-7.44	-12 5 1		-3.11	
22 1 0	3.92	-3.70	060 3.14	-3.23	-3 1 1 - 59.	- 15.20	-4 3 1 15.53	14.11	-14.5.1	0.95	-0.53	
24 1 0	2.00	-1.50	2 6 0 2.12	- 3. CZ	-5 1 1 7.1	1 7.25	-6 3 1 8.48	-8.22	-16 5 1	0.52	1.15	
26 1 0	1.13	-0.84	4 6 0 2.64	- 3. 30	-711 3.1	2 -3.73	-# 3 1 4-15	-4.0)	-18 5 1		3. 53	
120	19.22	19.17	6 6 0 1.42	-2.60	-911 16.4	0 -16.00	-12 1 1 9.19	8.90	- 20 5 1	8.14	- 7.02	
320	20.05	-24.06	8 6 0 1.55	1.20		-113	-12 3 1 10.84	- 1. 10	0.61	13.02	-12.38	Di
520	0.55	6.95	10 6 3 2.14		-13 1 1 5.4	5.81	16 3 1 6.12	- 3. 40		6.87		<i></i>
120		- 3.78	12.6.2. 5.24			1		11.49		2.27	-1.96	
920	1	-16.04	1		-1711 444	/ -10.04	-14 5 1 4.02	1. 44	0 0 1	1	11.57	
11 2 5	1.0	15.50	16 5 1 1.10		-19 1 - 24	1.12	-20.11 -5-3	- 5 3	111		- 8.06	
11 2 0	4 . 61	15.1-	3.6.1 4.00		-21 1 1 7.1	4 -7.17	22 1 1 4 4	3.71	10 6 1	13.55	12. 3	
12 1 2	1.2	0.1	1 7 1 11.42	-11.67					1261		3.74	
17 4 2		5 -		-13.00	-25 1	2 .2.72	1 6 1 12.53	11.30	14 6 1	5.63	- 6 . 30	C(1)
19 2 0	2.11	-2.82			1 2 1 22-1	2 21.35	3 4 1 16.37	-15.05	10 0 1	1.07	-2.69	$\mathcal{C}(1)$
21 2 0	9.31	1.60	110 8.40			7.61	1 1.7	-14.17	18 6 1	2.70	-2.09	C(2)
21 2 0	¢.15	0.00			- 14 - 63	9 -10.72		-0.75		10.90	-10.67	Cù
	3.67	-0.64	11 0 1.50		1 2 1- 1- 4	8 14.67	4.98	8.26		1.6	- 7. 50	
2 3 6	0.64	-0.81	15 7 7 2.53	- 3. • 3	221 24	· •	1 1 7.16	1.01	-0.01	10.45	9.76	C(4)
	.05	1.91	15 7 2 2.41	- 1 32	11 2 1 24-1	2 22.42	13 16	4.40	-8 6 1	4.60	8.79	C(5)
630	2.15		190 2.10		- 611 - 43		15 . 1 . 3.20	1.15	-10 6 1	70		CIG
\$ 3 0	15.02	10.57	1 2	c ,	12.2	-12.17	17 4 1 4.63		-17 6	0.19	- 9.05	C(0)
10 3 0	5.44	6.14		• • •		8 .7.84	14 4 10 0.23	0.00	14.6.1	5.29	4.86	C(7)
12 1 0	5.51		7 6 5 2.5-	10	121 0.6	0 15.54	21 4 1 1.01	5.79	-10 6 1	1.40	-1-+1	C(8)
1. 1. 2	1.51		983 1	1.11					-14 6 1	0.42	- 6. 97	
10 1 0	7.8	-9.18	1 6 31.44		2121- 44	0.7*		- 1.20	111	0.Ch		IN(9)
18 1 1	1.21	- 1-1-		- 2 - 4 - 1				1	- 111			O(10)
20 5 0	0.10	0.	17.20	10.00		-2.1		- 14 - 14		7.20	6.42	-0(11)
22.00	6.31			1.11		15.74		1.04		0.70		
	1		- 6 e 1 18 4	11.12	-7 : 1 - 3.1		-11 - 1 11-94	11.50		11	1.00	H(12)
1.0			- X (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12.51		-12.46	-011 68	-10.64	- 311	6.41	4.33	H(13)
5.5	17.44	17.00	25.01 2.18	- 1. 24	-11 2		-15 - 1+	c.c.	- 11 1	2.20		HÌUÀ
	1	11.0.	-1 - 1 - 19.65	61.27	11 2 1 3 4		-1/ - 1	0	- 3 ()	• • •	4.12	11(14)
::;	7.55		1 1 1 1 1	-3.44						e e)	6. 67	H(15)
:::		1				- 5.8	-21 - 1	1.42		0.24	0.84	H(16)
10 - 3	1.01	- i - i - i	-14 C 1		- 16 X L 1175	1 111.00	122 • 1 2.55	1.11	-6 * 1			(10)

Tabelle 1 (Fort.)

the second s

	P A	、「「「目前には一段」、「ストライスをするのでは、「「「スター」」」」」というない。「おいたない」」「「スター」」」」」」」をする「「目前にはないない」」」」」」」」」」」」」」」」」」」」」」」」」」
L F(0) 3 5.75 3 5.65 3 1.41 3 1.41 3 1.47 3 1.47	L F(2)	
F:C: 	60	
· · · · · · · · · · · · · · · · · · ·	e • 1	
+ (C) + .28 0.30 1.00 1.00 1.01 3.01 2.91 0.32 4.28 11.05 5.10	1.60	
f (;) - 4.18 - 0.14 - 1.07 1.60 - 0.2 1.60 - 0.2 - 0.51 1.18 - 0.52 11.18	rio.	
· * t - * 5 3 3 - * 5 5 3 - * 7 5 3 - * 8 5 4 - 12 5 3 - 12 5 3 - 13 5 3 - 15 5 3	··• 1	rud verse sons sons sons sons and destingen sons son engineers of some sons and the sons sons sons sons and so I sons and sons sons sons sons sons sons sons so
F.(1) 2.77 0.43 0.43 0.44 0.44 0.44 0.47 4.78 2.47 2.47 1.40 1.41 1.40 0.17	6.0	ran an earde an finn an ann an ann an ann an a' a' fan an a' a' ann a'
FILI 2.44 2.70 -1.50 -0.49 2.71 -4.6 3.59 -1.38 1.13 -0.57	*tci	
H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
f (0) 2.79 1.41 0.70 2.39 2.39 2.41 0.19 2.78 0.87 1.08 2.76	1(0)	and in the state of the state o
f(() -3.25 -0.45 -0.25 -2.45 -0.25 -2.45 -2.55 -2.45 -	4163	
- K L -3 c 3 -3 a % -4 a 3 -5 c 3 -5 c 3 -8 c 3 -8 c 3 -8 c 3 -9 c 3 -9 c 3 -9 c 3 -10 c 5 -11 c 7		
4 (c) 3.07 C.20 3.35 4.55 1.80 2.26 0.15 4.85 1.85	40	
5 42 1 3.15 C.41 3.47 -2.04 -2.14 3.76 C.31 5.02 -1.85	810	

Tabelle 2. Ortsparameter

Die Standardabweichung in Klammern bezieht sich auf die letzte Dezimalstelle.

Punktlage 4(e)

x	у		Ζ
0,0908 (2) 0,5183	(5)	0,2118 (8)
0,1414 (2) 0,6186	(5)	0,2237 (9)
0,1936 (2) 0,5539	(5)	0,3677 (9)
0,1974 (2) 0,3855	(5)	0,5055 (8)
0,1469 (2) 0,2861	(4)	0,4912 (7)
0,0950 (2) 0,3508	(4)	0,3483 (7)
0,1360 (2) 0,1059	(5)	0,6188 (8)
0,0497 (2) 0,2127	(4)	0,3801 (8)
0,0771 (2) 0,0726	(4)	0,5415 (7)
0,1691 (2) 0,0055	(4)	0,7674 (6)
-0,0017 (1) 0,2174	(4)	0,2851 (7)
0,051 (3) 0,563	(6)	0,091 (11)
0,139 (2) 0,754	(7)	0,120 (10)
0,231 (2) 0,633	(8)	0,365 (12)
0,234 (2) 0,336	(7)	0,630 (12)
0,056 (3) -0,028	(6)	0,580 (11)

Tabelle 3. Anisotrope Temperaturparameter ($\times 10^4$)

 $B = \sum_{i} \beta_{ij} h_i h_j$

			-			
	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	20 (1)	132 (6)	599 (24)	5 (2)	-5(4)	46 (10)
C(2)	26 (1)	122 (6)	669 (25)	-7(2)	7 (4)	31 (11)
C(3)	20 (1)	154 (7)	652 (25)	-16(2)	2 (4)	6 (11)
C(4)	15 (1)	151 (7)	595 (23)	-5(2)	-5(4)	-11(10)
C(5)	14 (1)	122 (6)	472 (21)	0 (2)	1 (3)	2 (9)
C(6)	14 (1)	121 (6)	489 (21)	-2(2)	1 (3)	25 (9)
C(7)	15(1)	139 (6)	543 (23)	6 (2)	-6(3)	36 (10)
C(8)	15 (1)	135 (6)	642 (23)	1 (2)	-6(3)	55 (10)
N(9)	15 (1)	130 (5)	798 (22)	0 (2)	-11(3)	104 (9)
O(10)	18 (1)	162 (5)	1049 (22)	5 (2)	-36(3)	132 (9)
O(11)	12 (1)	180 (6)	1189 (21)	-3(2)	-27(3)	150 (10)

fester Wasserstoffparameter in den üblicherweise beobachteten Abständen 1,08 Å von C und 1,02 Å von N mit B=3,0 sinnvoll, 22 Intensitäten, die mit grosser Wahrscheinlichkeit durch Extinktion geschwächt waren, wurden bei der Verfeinerung nicht berücksichtigt. Das Gewicht wurde mit $1/\sigma^2(F)$ gegeben.

Nach insgesamt 16 Verfeinerungszyklen, wobei in drei Zyklen die Ortsparameter der Wasserstoffatome mit den Daten sin $\theta/\lambda < 0.35$ verfeinert wurden, war die Parameteränderung kleiner als $\frac{1}{4}\sigma$.

Tabelle 1 zeigt beobachtete und berechnete Strukturfaktoren. Der *R*-Wert für alle Daten ist 0,094, für die in der Verfeinerung verwendeten Daten 0,072. Ortsparameter sind in Tabelle 2, Temperaturparameter in den Tabellen 3 und 4 aufgeführt.

Fig. 1. Ausschnitt aus der Struktur mit intermolekularen Abständen. Projektion auf die Ebene (001).

Tabelle 4. Hauptachsen der Ellipsoide der Wärmeschwingungen

 u_i entspricht der r.m.s.-Verschiebung auf der Hauptachse *i* des Ellipsoids, φ_{i1} , φ_{i2} , φ_{i3} sind die Winkel zwischen der Hauptachse *i* und den kristallographischen Achsen *a*, *b* und *c*^{*}.

	i	Ui	φ_{i_1}	φ_{l_2}	Piz
C(1)	1	0,182 Å	75°	142°	56°
	2	0.221	94	126	143
	3	0.231	16	80	102
C(2)	1	0.183	79	21	107
	2	0,225	91	107	163
	3	0,263	11	101	88
C(3)	1	0,187	53	37	93
	2	0,219	94	91	176
	3	0,254	37	127	92
C(4)	1	0,187	35	65	68
	2	0,213	111	98	22
	3	0,217	64	154	88
C(5)	1	0,186	73	97	19
	2	0,189	124	146	86
	3	0,191	39	124	108
C(6)	1	0,179	78	44	131
	2	0,191	151	99	117
	3	0,201	64	132	127
C(7)	1	0,176	56	126	54
	2	0,209	136	90	46
	3	0,216	65	36	65
C(8)	1	0,183	63	135	57
	2	0,199	150	120	85
	3	0,231	78	121	146
N(9)	1	0,172	104	34	120
	2	0,197	162	108	93
	3	0,261	79	117	150
O(10)	1	0,173	54	131	61
	2	0,229	138	132	90
	3	0,303	71	111	151
0(11)	1	0,172	19	98	73
	2	0,208	105	153	68
	3	0,318	78	115	152

Beschreibung der Struktur

Das Molekül ist annähernd planar. Die Gleichung der Least-squares-Ebene ohne Berücksichtigung der Wasserstoffatome ist

-3,9074x + 1,7361y + 2,1694z = 1.

Sie bildet Winkel von $4,7^{\circ}$ mit ($\overline{2}11$), $69,0^{\circ}$ mit (010) und $26,7^{\circ}$ mit (001). Die Atome liegen maximal 0,022 Å ausserhalb dieser Ebene. Interatomare Abstände und Winkel sind in Tabelle 5(*a*) und Tabelle 6 aufgeführt.

Tabelle 5. Interatomare Abstände

(a) Im Molekül		(b) Kurze Abst	ände innerhalb der Bän	der		
C(1) - C(2)	1,387 (5) Å	N(9)O(11)	2,895 (4) Å	-x,	-y,	$1 - z^*$
C(2) - C(3)	1,389 (5)	C(2) - O(10)	3,498 (5)	х,	1 + r, -	-1 + z
C(3) - C(4)	1,394 (5)	C(1) - O(11)	3,411 (4)	-x,	-v,	1 - z
C(4) - C(5)	1,382 (5)					
C(5) - C(6)	1,383 (4)	(c) Zwischen de	en Bändern			
C(6) - C(1)	1,386 (5)	C(2) - O(10)	3,659 (5)	х,	1 + y,	Z
C(5) - C(7)	1,485 (5)	C(1) - O(11)	3,478 (5)	-x,	1 - y,	1-z
C(7) - N(9)	1,393 (4)	C(7) - C(6)	3,498 (5)	х,	ÿ.,	1 + z
N(9) - C(8)	1,380 (4)	N(9) - C(8)	3,442 (5)	х,	<i>y</i> ,	1 + z
C(8) - C(6)	1,485 (5)	N(9) - O(11)	3,569 (4)	х,	у,	1 + z
C(7) - O(10)	1,208 (4)	O(10) - C(7)	3,435 (4)	<i>x</i> ,	у,	1 + z
C(8) - O(11)	1,219 (4)	C(3) - O(10)	3,421 (5)	$\frac{1}{2} - x$	$\frac{1}{2} + y$	$\frac{3}{2} - Z$
C(1) - H(12)	1,06 (6)	C(4) - O(10)	3,280 (4)	$\frac{1}{2} - x$	$\frac{1}{3} + v$	$\frac{3}{3} - 2$
C(2) - H(13)	1,11 (6)				- • ·	-
C(3) - H(14)	1.04 (6)					

* Punktlage des zweiten Atoms.

Tabelle 6. *Bindungswinkel*

i	j	k	Winkel <i>ijk</i>	i	j	k	Winkel ijk
C(6)	C (1)	C(2)	116,8 (3)°	C(6)	C(1)	H(12)	121 (4)°
C(1)	C(2)	C(3)	121,4 (3)	C(2)	C(1)	H(12)	122 (4)
C(2)	C(3)	C(4)	121,6 (3)	C (1)	C(2)	H(13)	118 (4)
C(3)	C(4)	C(5)	116,6 (3)	C(3)	C(2)	H(13)	120 (4)
C(4)	C(5)	C(6)	121,7 (3)	C(2)	C(3)	H(14)	119 (4)
C(6)	C(5)	C(7)	108,2 (3)	C(4)	C(3)	H(14)	120 (4)
C(7)	C(5)	C(4)	130,0 (3)	C(3)	C(4)	H(15)	124 (4)
C(1)	C(6)	C(5)	121,9 (3)	C(5)	C(4)	H(15)	119 (4)
C(5)	C(6)	C(8)	107,8 (3)	C(7)	N(9)	H(16)	129 (4)
C(8)	C(6)	C(1)	130,3 (3)	C(8)	N(9)	H(16)	119 (4)
C(5)	C(7)	O(10)	130,0 (3)				
O(10)	C(7)	N(9)	124,8 (4)				
N(9)	C(7)	C(5)	105,6 (3)				
C(6)	C(8)	O(11)	128,4 (3)				
O(11)	C(8)	N(9)	125,4 (3)				
N(9)	C(8)	C(6)	106,2 (3)				
C(7)	N(9)	C(8)	112,2 (3)				

Das durch das Symmetriezentrum verknüpfte Molekülpaar ist durch zwei Wasserstoffbrückenbindungen N-H···O (Abstand N-O, 2,895 Å) gebunden; die maximale Abweichung von der gemeinsamen Ebene beträgt 0,1 Å. Die Molekülpaare sind in c-Richtung parallel zueinander gestapelt und in der Ebene ($\overline{2}11$) bzw. durch die 2₁ Achse in ($\overline{2}11$) aneinandergereiht. Abstände und Verknüpfung sind aus Fig. 1 und Tabelle 5(b), (c) zu ersehen. Die interatomaren Abstände im Molekül entsprechen den vergleichbaren im isochemischen Isatin (Goldschmidt & Llewellyn, 1950) bei dem die N-H···O Bindung mit dem Abstand N-O von 2,93 Å angegeben wird.

1,02 (6)

0.93 (6)

C(4)-H(15) N(9)-H(16)

Herrn Professor Dr V. Kupčik danke ich für die Überlassung des Themas und für wertvolle Diskussionen während der Arbeit. Herrn Dr Šipek und dem Nationalmuseum Prag bin ich für die Überlassung von Untersuchungsmaterial verbunden. Die Berechnungen wurden durchgeführt mit Programmen von Busing, Martin und Levy, Durovič, Long, Paulus, Saenger, Simpson und institutsinternen. Den betreffenden Kollegen sei an dieser Stelle für die Überlassung gedankt.

Literatur

- BAGCHI, S. N. & KASEM, M. A. (1945). Indian J. Phys. 19, 93.
- GOLDSCHMIDT, G. H. & LLEWELLYN, F. J. (1950). Acta Cryst. 3, 294.
- Rost, R. (1942). Rozpr. české Akad. 52, (25) 45. [Abstr. in Miner. Abstr. (1946). 9, 186.]